Integrative Bioinformatics and Systems Biology Approach for the Identification of Key Genes Responses to Masoprocol Treatment in Breast Cancer
DOI:
https://doi.org/10.64229/t2j17t84Keywords:
Masoprocol, Breast cancer, TP53, Mutation, Molecular docking, Protein-protein interactions, Pathway enrichment, Systems biologyAbstract
This study presents a system-level investigation repositioning Masoprocol as a potential therapeutic candidate for breast cancer. Previously withdrawn due to limited mechanistic insights, Masoprocol was re-evaluated using integrative bioinformatics and systems biology to reveal its multi-target potential and pharmacological relevance. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling confirmed favourable drug-like characteristics, including Lipinski compliance, low predicted toxicity, and limited central nervous system penetration. Target prediction and enrichment analyses were performed, followed by construction of a protein-protein interaction network and a gene regulatory network. Masoprocol was found to interact with multiple breast cancer-associated genes, with TP53 emerging as a prominent regulatory hub across PPI and GRN layers. Transcriptomic profiling showed ESR1, MMP9, and AR were upregulated in tumors, whereas PTGS2 was downregulated. Elevated MMP9 and AR levels correlated with poor overall survival. Co-expression analysis linked Masoprocol’s targets to oncogenic regulators involved in epithelial-mesenchymal transition and hormone signaling. Immune infiltration analysis suggested potential immunomodulatory effects. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment highlighted estrogen signaling and multiple cancer-associated pathways. Docking and molecular dynamics simulations with the Y220C TP53 mutant showed strong binding but moderate conformational stability, indicating a need for structural optimization. These findings support Masoprocol’s repositioning as a polypharmacological breast cancer candidate and provide a roadmap for its future optimization and experimental validation.
References
[1]Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Natural Products and Bioprospecting, 2021, 11, 5-13. DOI: 10.1007/s13659-020-00293-7
[2]Azer K, Leaf I. Systems biology platform for efficient development and translation of multitargeted therapeutics. Frontiers in Systems Biology, 2023, 3, 1229532. DOI: 10.3389/fsysb.2023.1229532
[3]Khalifa SAM, Elias N, Farag MA, Chen L, Saeed A, Hegazy MF, et al. Marine natural products: A source of novel anticancer drugs. Marine Drugs, 2019, 17(9), 491. DOI: 10.3390/md17090491
[4]Ghareeb A, Fouda A, Kishk RM, El Kazzaz WM. Unlocking the therapeutic potential of bioactive exopolysaccharide produced by marine Actinobacterium Streptomyces vinaceusdrappus AMG31: A novel approach to drug development. International Journal of Biological Macromolecules, 2024, 276(Pt 2), 133861. DOI: 10.1016/j.ijbiomac.2024.133861
[5]Chowdhury MR, Kizhakedathil MPJ, Kumar V, Saktheeswaran M, Kutty Mathesh K, Deepa VS. Exploring the therapeutic potential of marine actinomycetes: A systems biology-based approach for Alzheimer’s disease treatment. Discover Molecules, 2024, 1(4). DOI: /10.1007/s44345-024-00004-6
[6]Chowdhury MR, Karamveer K, Tiwary BK, Nampoothiri NK, Erva RR, Deepa VS. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer’s disease treatment. Metabolic Brain Disease, 2025, 40(1), 8. DOI: 10.1007/s11011-024-01460-2
[7]Chowdhury MR, Reddy RVS, Nampoothiri NK, Erva RR, Vijaykumar SD. Exploring bioactive natural products for treating neurodegenerative diseases: A computational network medicine approach targeting the estrogen signaling pathway in amyotrophic lateral sclerosis and Parkinson’s disease. Metabolic Brain Disease, 2025, 40(4), 169. DOI: 10.1007/s11011-025-01585-y
[8]Chowdhury MR, Tiwari A, Karamveer K, Dubey GP, Tiwary BK, Vijaykumar SD. Clinical application and pharmacological mechanism of polyherbal phytoformulations in breast cancer and depression treatment: review and network pharmacological analysis. Proceedings of the Indian National Science Academy, 2023, 89(3), 560-583. DOI: 10.1007/s43538-023-00193-7
[9]Luo J, Chuang T, Cheung J, Quan J, Tsai J, Sullivan C, et al. Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). European Journal of Pharmacology, 1998, 346(1), 77-79. DOI: 10.1016/s0014-2999(98)00139-3
[10]Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Madariaga-Navarrete A, Higuera-Piedrahita RI, Delgadillo-Ruiz L, et al. Phytochemical compounds and pharmacological properties of Larrea tridentata. Molecules, 2022, 27(17), 5393. DOI: 10.3390/molecules27175393
[11]Lambert JD, Dorr RT, Timmermann BN. Nordihydroguaiaretic acid: A review of its numerous and varied biological activities. Pharmaceutical Biology, 2004, 42(2), 149-158. DOI: 10.1080/13880200490512016
[12]Hwu JR, Hsu CI, Hsu MH, Liang YC, Huang RC, Lee YC. Glycosylated nordihydroguaiaretic acids as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters, 2011, 21(1), 380-382. DOI: 10.1016/j.bmcl.2010.10.137
[13]Hernández-Damián J, Andérica-Romero AC, Pedraza-Chaverri J. Paradoxical cellular effects and biological role of the multifaceted compound nordihydroguaiaretic acid. Archiv der Pharmazie, 2014, 347(10), 685-697. DOI: 10.1002/ardp.201400159
[14]Choulis, N.H. Dermatological drugs, topical agents, and cosmetics. Side Effects of Drugs Annual. 2012, 34, 257-269. DOI: 10.1016/B978-0-444-59499-0.00014-3
[15]Romano JD, Tatonetti NP. Informatics and computational methods in natural product drug discovery: A review and perspectives. Frontiers in Genetics, 2019, 10, 368. DOI: 10.3389/fgene.2019.00368
[16]Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, et al. An integrated systems biology and network-based approach to identify novel biomarkers in breast cancer cell lines using gene expression data. Interdisciplinary Sciences, 2020, 12(2), 155-168. DOI: 10.1007/s12539-020-00360-0
[17]Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Scientific Reports, 2017, 7, 42717. DOI: 10.1038/srep42717
[18]Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2001, 46, 3-26. DOI: 10.1016/s0169-409x(00)00129-0
[19]Banerjee P, Kemmler E, Dunkel M, Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 2024, 52(W1), W513-W520. DOI: 10.1093/nar/gkae303
[20]Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 2019, 47(W1), W357-W364. doi: 10.1093/nar/gkz38
[21]Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research, 2007, 35(Database issue), 198-201. DOI: 10.1093/nar/gkl999
[22]Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford), 2015, 2015, bav028. DOI: 10.1093/database/bav028
[23]Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020. DOI: 10.1093/database/baq020
[24]Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T, et al. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics, 2023, 39(1), btac793. DOI: 10.1093/bioinformatics/btac793
[25]Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 2021, 49(D1), D605-D612. DOI: 10.1093/nar/gkaa1074
[26]Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2001, 2(1), 2. DOI: 10.1186/1471-2105-4-2
[27]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 2003, 13(11), 2498-2504. DOI: 10.1101/gr.1239303
[28]Barthélemy M. Betweenness centrality in large complex networks. European Physical Journal B, 2004, 38(2), 163-168. DOI: 10.1140/epjb/e2004-00111-4
[29]Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Research, 2019, 47(W1), W234-W241. DOI: 10.1093/nar/gkz240
[30]Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: Update of the open-access database of transcription factor binding profiles. Nucleic Acids Research, 2020, 48(D1), D87-D92. DOI: 10.1093/nar/gkz1001
[31]Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Research, 2020, 48(D1), D148-D154. DOI: 10.1093/nar/gkz896
[32]Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 2010, 38(Suppl_2), W214-W220. DOI: 10.1093/nar/gkq537
[33]Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 2017, 77(21), e108-e110. DOI: 10.1158/0008-5472.CAN-17-0307
[34]Ge SX, Jung D, Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics, 2020, 36(8), 2628-2629. DOI: 10.1093/bioinformatics/btz931
[35]Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Science, 2020, 29(1), 28-35. DOI: 10.1002/pro.3711
[36]Bauer MR, Krämer A, Settanni G, Jones RN, Ni X, Khan Tareque R, et al. Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: the Y220X paradigm. ACS Chemical Biology, 2020, 15(3), 657-668. DOI: 10.1021/acschembio.9b00748
[37]Brooks BR, Brooks CL 3rd, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 2009, 30(10), 1545-1614. DOI: 10.1002/jcc.21287
[38]Wu G, Robertson DH, Brooks CL 3rd, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER__a CHARMm-based MD docking algorithm. Journal of Computational Chemistry, 2003, 24(13), 1549-1562. DOI: 10.1002/jcc.10306
[39]Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, et al. Definition and testing of the GROMOS force field versions 54A7 and 54B7. European Biophysics Journal, 2011, 40(7), 843-856. DOI: 10.1007/s00249-011-0700-9
[40]van Aalten DM, Bywater R, Findlay JB, Hendlich M, Hooft RW, Vriend G. PRODRG: A program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 1996, 10(3), 255-262. DOI: 10.1007/BF00355047
[41]Joseph C, Alsaleem M, Orah N, Narasimha PL, Miligy IM, Kurozumi S, et al. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Research and Treatment, 2020, 182(2), 267-282. DOI: 10.1007/s10549-020-05670-x
[42]Saatci O, Huynh-Dam KT, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. Journal of Molecular Medicine, 2021, 99(12), 1691-1710. DOI: 10.1007/s00109-021-02136-5
[43]Herzog SK, Fuqua SAW. ESR1 mutations and therapeutic resistance in metastatic breast cancer: Progress and remaining challenges. British Journal of Cancer, 2022, 126(2), 174-186. DOI: 10.1038/s41416-021-01564-x
[44]Markosyan N, Li J, Sun YH, Richman LP, Lin JH, Yan F, et al. Tumor cell-intrinsic EPHA2 suppresses antitumor immunity by regulating PTGS2 (COX-2). Journal of Clinical Investigation, 2019, 129(9), 3594-3609. DOI: 10.1172/JCI127755
[45]Chowdhury MR, Vijaykumar SD. A systems biology approach reveals dual neurotherapeutic mechanisms of Dioscorea bulbifera in Alzheimer’s disease via estrogen signaling and cholinergic modulation. Inflammopharmacology, 2025, 33, 5483-5508. DOI: 10.1007/s10787-025-01872-1
[46]Daniel AR, Gaviglio AL, Knutson TP, Ostrander JH, D’Assoro AB, Ravindranathan P, et al. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene, 2015, 34(4), 506-515. DOI: 10.1038/onc.2013.579
[47]Ogara MF, Rodríguez-Seguí SA, Marini M, Nacht AS, Stortz M, Levi V, et al. The glucocorticoid receptor interferes with progesterone receptor-dependent genomic regulation in breast cancer cells. Nucleic Acids Research, 2019, 47(20), 10645-10661. DOI: 10.1093/nar/gkz857
[48]Gong Y, Nagarathinam R, Arisi MF, Gerratana L, Winn JS, Slifker M, Pei J. Genetic variants and tumor immune microenvironment: Clues for targeted therapies in inflammatory breast cancer (IBC). International Journal of Molecular Sciences, 2021, 22(16), 8924. DOI: 10.3390/ijms22168924
[49]Harris MA, Savas P, Virassamy B, O’Malley MMR, Kay J, Mueller SN, et al. Towards targeting the breast cancer immune microenvironment. Nature Reviews Cancer, 2024, 24, 554-577. DOI: 10.1038/s41568-024-00714-6
[50]Chowdhury MR, Tiwari A, Dubey GP. In silico investigation of Y220C mutant p53 for lead design. bioRxiv, 2019, 820761. DOI:10.1101/820761
[51]Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen receptor signaling in the immune system. Endocrine Reviews, 2023, 44(1), 117-141. DOI: 10.1210/endrev/bnac017
[52]Clusan L, Ferrière F, Flouriot G, Pakdel F. A basic review on estrogen receptor signaling pathways in breast cancer. International Journal of Molecular Sciences, 2023, 24(7), 6834. DOI: 10.3390/ijms24076834
[53]Belachew EB, Sewasew DT. Molecular mechanisms of endocrine resistance in estrogen-receptor-positive breast cancer. Frontiers in Endocrinology, 2021, 12, 599586. DOI: 10.3389/fendo.2021.599586
[54]Chauhan P, Yadav R, Kaushal V, Ranga S, Yadav C, Kaur M. Overall survival of breast cancer patients in association with ESR1 polymorphism. Human Genetics, 2023, 142, 201217. DOI: 10.1016/j.humgen.2023.201217
[55]Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis. BMC Cancer, 2021, 21, 149. DOI: 10.1186/s12885-021-07860-2
[56]Hackbart H, Cui X, Lee JS. Androgen receptor in breast cancer and its clinical implication. Transl. Breast Cancer Research, 2023, 4, 30. DOI: 10.21037/tbcr-23-44
[57]Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. Journal of Hematology & Oncology, 2020, 13, 50. DOI: 10.1186/s13045-020-00885-3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mayank Roy Chowdhury (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.