Frontiers in Cancer and Haematology: Emerging Biomarkers, Therapeutics, and Technologies
DOI:
https://doi.org/10.64229/v6s2ft48Keywords:
Hematological malignancies, Liquid biopsy, Circulating tumor DNA, Circulating tumor cells, Predictive biomarkers, Treatment resistance, Tumor immune microenvironment, Nanoparticle drug delivery, Immunological processesAbstract
Cancer continues to be the leading cause of death globally. This paper discusses the major advances in liquid biopsy, cancer microenvironment biology, AI, and nanomedicine for the period 2015-2025 and their translational implications. Original articles, systematic reviews, and top-quality review articles on PubMed, Scopus, and Web of Science were searched for biomarker development, microenvironment-targeted therapeutics, data-driven decision support, and nanoparticle-based delivery systems. Liquid biopsy (circulating tumor DNA, circulating tumor cells, extracellular vesicles) has the potential to identify minimal residual disease and help select targeted therapies, but issues with analytical sensitivity, pre-analytical variability, and assay standardisation still need to be resolved. The roles of stromal cells, immunological infiltrates, and extracellular matrix in disease progression and therapeutic resistance make them very attractive yet still untested targets. Artificial intelligence applied to multimodal data has the potential to assist in diagnosis and prognosis; however, it requires external validation, transparency, and bias mitigation before routine clinical use. Nanomedicine comes with advanced features such as targeting and multimodal therapy; however, it encounters challenges related to manufacturing, pharmacokinetics, and regulatory standards. To make breakthroughs in the clinic, assay standardisation, prospective multicentre validation, biomarker-driven trial design, and interdisciplinary collaborations are imperative.
References
[1]Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. International Journal of Cancer, 2021, 149(4), 778-789. DOI: 10.1002/ijc.33588
[2]Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chinese Medical Journal, 2021, 134(7), 783-791. DOI: 0.1097/CM9.0000000000001474
[3]Gopal S, Wood WA, Lee SJ, Shea TC, Naresh KN, Kazembe PN, et al. Meeting the challenge of hematologic malignancies in sub-Saharan Africa. Blood, the Journal of the American Society of Hematology, 2012, 119(22), 5078-5087. DOI: 10.1182/blood-2012-02-387092
[4]Bizuayehu HM, Ahmed KY, Kibret GD, Dadi AF, Belachew SA, Bagade T, et al. Global disparities of cancer and its projected burden in 2050. JAMA Network Open, 2024, 7(11), e2443198. DOI: 10.1001/jamanetworkopen.2024.43198
[5]Sharma R, Jani C. Mapping incidence and mortality of leukemia and its subtypes in 21 world regions in last three decades and projections to 2030. Annals of Hematology, 2022, 101(7), 1523-1534. DOI: 10.1007/s00277-022-04843-6
[6]Malik N, Singh RK. Five years of research on 2, 4-thiazolidinediones as anticancer agents: Medicinal chemistry insights (2020–2024). RSC Medicinal Chemistry, 2025. DOI: 10.1039/d5md00344j
[7]Barrios CH. Global challenges in breast cancer detection and treatment. The Breast, 2022, 62(Suppl 1), S3-S6. DOI: 10.1016/j.breast.2022.02.003
[8]Jiang B, Xie D, Wang S, Li X, Wu G. Advances in early detection methods for solid tumors. Frontiers in Genetics, 2023, 14, 1091223. DOI: 10.3389/fgene.2023.1091223
[9]Allen TA. The role of circulating tumor cells as a liquid biopsy for cancer: Advances, biology, technical challenges, and clinical relevance. Cancers, 2024, 16(7), 1377. DOI: 10.3390/cancers16071377
[10]Esposito A, Criscitiello C, Locatelli M, Milano M, Curigliano G. Liquid biopsies for solid tumors: Understanding tumor heterogeneity and real time monitoring of early resistance to targeted therapies. Pharmacology & Therapeutics, 2016, 157, 120-124. DOI: 10.1016/j.pharmthera.2015.11.007
[11]Connal S, Cameron JM, Sala A, Brennan PM, Palmer DS, Palmer JD, et al. Liquid biopsies: The future of cancer early detection. Journal of Translational Medicine, 2023, 21(1), 118. DOI: 10.1186/s12967-023-03960-8
[12]Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: Technological revolutions and clinical dilemma. Expert Review of Molecular Diagnostics, 2024, 24(10), 937-955. DOI: 10.1080/14737159.2024.2408744
[13]Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, et al. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Frontiers in Oncology, 2024, 14, 1303335. DOI: 10.3389/fonc.2024.1303335
[14]Elazezy M, Joosse SA. Techniques of using circulating tumor DNA as a liquid biopsy component in cancer management. Computational and Structural Biotechnology Journal, 2018, 16, 370-378. DOI: 10.1016/j.csbj.2018.10.002
[15]Alix-Panabières C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discovery, 2016, 6(5), 479-491. DOI: 10.1158/2159-8290.CD-15-1483
[16]Gale D, Heider K, Ruiz-Valdepenas A, Hackinger S, Perry M, Marsico G, et al. Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Annals of Oncology, 2022, 33(5), 500-510. DOI: 10.1016/j.annonc.2022.02.007
[17]Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, et al. Circulating tumor cells: Biology and clinical significance. Signal Transduction and Targeted Therapy, 2021, 6(1), 404. DOI: 10.1038/s41392-021-00817-8
[18]Pantel K, Speicher M. The biology of circulating tumor cells. Oncogene, 2016, 35(10), 1216-1224. DOI: 10.1038/onc.2015.192
[19]Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Medical Oncology, 2017, 34(1), 12. DOI: 10.1007/s12032-016-0875-0
[20]Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduction and Targeted Therapy, 2024, 9(1), 27. DOI: 10.1038/s41392-024-01735-1
[21]Blank C, Gajewski TF, Mackensen A. Interaction of PD-l1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: Implications for tumor immunotherapy. Cancer Immunology, Immunotherapy, 2005, 54(4), 307-314. DOI: 10.1007/s00262-004-0593-x
[22]Xiang Z, Xie Q, Yu Z. Exosomal DNA: Role in reflecting tumor genetic heterogeneity, diagnosis, and disease monitoring. Cancers, 2023, 16(1), 57. DOI: 10.3390/cancers16010057
[23]Chin RI, Chen K, Usmani A, Chua C, Harris PK, Binkley MS, et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Molecular Diagnosis & Therapy, 2019, 23(3), 311-331. DOI: 0.1007/s40291-019-00390-5
[24]Castro-Giner F, Aceto N. Tracking cancer progression: From circulating tumor cells to metastasis. Genome Medicine, 2020, 12(1), 31. DOI: 10.1186/s13073-020-00728-3
[25]Wang W, Liu N, Wang S, Yu C, Pan L, Zhang M. Urinary exosomal RAB11A serves as a novel non-invasive biomarker for diagnosis, treatment response monitoring, and prognosis in small cell lung cancer. Clinical Proteomics, 2025, 22(1), 30. DOI: 10.1186/s12014-025-09554-4
[26]Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Letters, 2016, 380(1), 205-215. DOI: 10.1016/j.canlet.2015.07.044
[27]Giannone G, Ghisoni E, Genta S, Scotto G, Tuninetti V, Turinetto M, et al. Immuno-metabolism and microenvironment in cancer: Key players for immunotherapy. International Journal of Molecular Sciences, 2020, 21(12), 4414. DOI: 10.3390/ijms21124414
[28]Sung JY, Cheong JH. New immunometabolic strategy based on cell type-specific metabolic reprogramming in the tumor immune microenvironment. Cells, 2022, 11(5), 768. DOI: 10.3390/cells11050768
[29]Kanwal R, Gupta S. Epigenetic modifications in cancer. Clinical Genetics, 2012, 81(4), 303-311. DOI: 10.1111/j.1399-0004.2011.01809.x
[30]Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Frontiers in Bioscience-Landmark, 2020, 25(6), 1058-1109. DOI: 10.2741/4847
[31]Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: A current overview. Clinical & Experimental Metastasis, 2018, 35(4), 309-318. DOI: 10.1007/s10585-018-9903-0
[32]Wu J, Lin Z. Non-small cell lung cancer targeted therapy: Drugs and mechanisms of drug resistance. International Journal of Molecular Sciences, 2022, 23(23), 15056. DOI: 10.3390/ijms232315056
[33]Luo J, Xiang X, Gong G, Jiang L. Cancer-associated fibroblast-mediated immune evasion: Molecular mechanisms of stromal-immune crosstalk in the tumor microenvironment. Frontiers in Immunology, 2025, 16, 1617662. DOI: 10.3389/fimmu.2025.1617662
[34]Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, et al. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Communications, 2023, 43(5), 525-561. DOI: 10.1002/cac2.12416
[35]Djavaheri-Mergny M, Giuriato S, Tschan MP, Humbert M. Therapeutic modulation of autophagy in leukaemia and lymphoma. Cells, 2019, 8(2), 103. DOI: 10.3390/cells8020103
[36]Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: Biology and therapeutic targeting. Journal of Clinical Oncology, 2011, 29(5), 591-599. DOI: 10.1200/JCO.2010.31.0904
[37]Bhowmick NA, Moses HL. Tumor-stroma interactions. Current Opinion in Genetics & Development, 2005, 15(1), 97-101.
[38]Dzobo K, Dandara C. The extracellular matrix: Its composition, function, remodeling, and role in tumorigenesis. Biomimetics, 2023, 8(2), 146. DOI: 10.3390/biomimetics8020146
[39]Arbab AS, Rashid MH, Angara K, Borin TF, Lin PC, Jain M, et al. Major challenges and potential microenvironment-targeted therapies in glioblastoma. International Journal of Molecular Sciences, 2017, 18(12), 2732. DOI: 10.3390/ijms18122732
[40]Costa S, Rodrigues J, Vieira C, Dias S, Viegas J, Castro F, et al. Advancing osteosarcoma 3D modeling in vitro for novel tumor microenvironment-targeted therapies development. Journal of Controlled Release, 2024, 376, 1068-1085. DOI: 10.1016/j.jconrel.2024.10.068
[41]Loizzi V, Del Vecchio V, Gargano G, De Liso M, Kardashi A, Naglieri E, et al. Biological pathways involved in tumor angiogenesis and bevacizumab based anti-angiogenic therapy with special references to ovarian cancer. International Journal of Molecular Sciences, 2017, 18(9), 1967. DOI: 10.3390/ijms18091967
[42]Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Frontiers in Pharmacology, 2021, 12, 731798. DOI: 10.3389/fphar.2021.731798
[43]Drilon AE, Subbiah V, Oxnard GR, Bauer TM, Velcheti V, Lakhani NJ, et al., A phase 1 study of LOXO-292, a potent and highly selective RET inhibitor, in patients with RET-altered cancers. American Society of Clinical Oncology, 2018.
[44]Yang M, Wu S, Zhang J, Lu L, Deng D, Xia Q, et al. Immunotherapies for aging and age-related diseases: Advances, pitfalls and prospects. Research, 2025, 8, 0866. DOI: 10.34133/research.0866.
[45]Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology__new tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 2019, 16(11), 703-715. DOI: 10.1038/s41571-019-0252-y
[46]Thiringer E, Gustafsson F, Eriksson K, Rantalainen M, Scanner-induced domain shifts undermine the robustness of pathology foundation models. arXiv, 2026. DOI: 10.48550/arXiv.2601.04163
[47]Arun S, Grosheva M, Kosenko M, Robertus JL, Blyuss O, Gabe R, et al. Systematic scoping review of external validation studies of AI pathology models for lung cancer diagnosis. NPJ Precision Oncology, 2025, 9(1), 166. DOI: 10.1038/s41698-025-00940-7
[48]Matthews GA, McGenity C, Bansal D, Treanor D. Public evidence on AI products for digital pathology. NPJ Digital Medicine, 2024, 7(1), 300. DOI: 10.1038/s41746-024-01294-3
[49]Walter W, Pohlkamp C, Meggendorfer M, Nadarajah N, Kern W, Haferlach C, et al. Artificial intelligence in hematological diagnostics: Game changer or gadget? Blood Reviews, 2023, 58, 101019. DOI: 10.1016/j.blre.2022.101019
[50]Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, et al. Preparing medical imaging data for machine learning. Radiology, 2020, 295(1), 4-15. DOI: 10.1148/radiol.2020192224
[51]Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 2019, 17(1), 195. DOI: 10.1186/s12916-019-1426-2
[52]Komura D, Ochi M, Ishikawa S. Machine learning methods for histopathological image analysis: Updates in 2024. Computational and Structural Biotechnology Journal, 2025, 27, 383-400. DOI: 10.1016/j.csbj.2024.12.033
[53]Harashima H, Abdel-Aleem J, Abdellatif A, Tawfeek H, Younis M. Clinical translation of nanomedicines: Challenges, opportunities, and keys. Advanced Drug Delivery Reviews, 2022, 181, 114083. DOI: 10.1016/j.addr.2021.114083
[54]Subhan MA, Parveen F, Filipczak N, Yalamarty SSK, Torchilin VP. Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis. Journal of Personalized Medicine, 2023, 13(3). DOI: 10.3390/jpm13030389
[55]Jeon S, Jun E, Chang H, Yhee JY, Koh EY, Kim Y, et al. Prediction the clinical EPR effect of nanoparticles in patient-derived xenograft models. Journal of Controlled Release, 2022, 351, 37-49. DOI: 10.1016/j.jconrel.2022.09.007
[56]Metselaar JM, Lammers T. Challenges in nanomedicine clinical translation. Drug Delivery and Translational Research, 2020, 10(3), 721-725. DOI: 10.1007/s13346-020-00740-5
[57]Kelkar SS, Reineke TM. Theranostics: Combining imaging and therapy. Bioconjugate Chemistry, 2011, 22(10), 1879-1903. DOI: 10.1021/bc200151q
[58]Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics, 2021, 11(2), 579. DOI: 10.7150/thno.48811
[59]Ahmad A, Imran M, Ahsan H. Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 2023, 15(6), 1630. DOI: 10.3390/pharmaceutics15061630
[60]Molla G, Bitew M. The future of cancer diagnosis and treatment: Unlocking the power of biomarkers and personalized molecular-targeted therapies. Journal of Molecular Pathology, 2025, 6(3), 20. DOI: 10.3390/jmp6030020
[61]Klinkman MS, Coyne JC, Gallo S, Schwenk TL. False positives, false negatives, and the validity of the diagnosis of major depression in primary care. Archives of Family Medicine, 1998, 7(5), 451-461. DOI: 10.1001/archfami.7.5.451
[62]Thomas Junior D, Chai J, Lu YJ. The development and applications of circulating tumour cells, circulating tumour DNA and other emerging biomarkers for early cancer detection. Exploration of Targeted Anti-tumor Therapy, 2025, 6, 1002314. DOI: 10.37349/etat.2025.1002314
[63]Zekri A-RN, Bahnassy AA. Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are superior to CA 15-3 in predicting tumor burden, patients response to treatment and overall survival (OS) rates in metastatic breast cancer patients from Egypt. Cancer Research, 2016, 76(14_Supplement), 504-504. DOI: 10.1158/1538-7445.AM2016-504
[64]Rubatto M, Sciamarrelli N, Borriello S, Pala V, Mastorino L, Tonella L, et al. Classic and new strategies for the treatment of advanced melanoma and non-melanoma skin cancer. Frontiers in Medicine, 2023, 9, 959289. DOI: 10.3389/fmed.2022.959289
[65]Mazzitelli C. Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes (EX) in breast cancer patients: A prospective study. IRIS, 2021. Available form: https://hdl.handle.net/11567/1044956 (accessed on June 7, 2025).
[66]Yan X, Yeh C, Zou L. Clinical applications of circulating tumor DNA, circulating tumor cells, and exosomes as liquid biopsy-based tumor biomarkers. Journal of Applied Bioanalysis, 2020, 6(3), 107-130. DOI: 10.17145/jab.20.013
[67]Bakker E, Hendrikse NM, Ehmann F, Van der Meer DS, Llinares Garcia J, Vetter T, et al. Biomarker qualification at the European medicines agency: A review of biomarker qualification procedures from 2008 to 2020. Clinical Pharmacology & Therapeutics, 2022, 112(1), 69-80. DOI: 10.1002/cpt.2554
[68]Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis. Critical Reviews in Clinical Laboratory Sciences, 2023, 60(8), 573-594. DOI: 10.1080/10408363.2023.2230290
[69]Crouch M. Application of genomic technologies and the issues raised. Medical Genetics and Law: An International Perspective. Springer, 2025, 463-515. DOI: 10.1007/978-3-031-78958-8_11
[70]Harrel N. The changing governance of genetic intervention technologies: An analysis of legal change patterns, drivers, impacts, and a proposed reform. Université d'Ottawa/University of Ottawa, 2021.
[71]Kulynych J, Greely HT. Clinical genomics, big data, and electronic medical records: Reconciling patient rights with research when privacy and science collide. Journal of Law and the Biosciences, 2017, 4(1), 94-132. DOI: 10.1093/jlb/lsw061
[72]Mahumud RA. Optimising cancer medicine in clinical practices: Are neoadjuvant and adjuvant immunotherapies affordable for cancer patients in low-and middle-income countries? Cancers, 2025, 17(10), 1722. DOI: 10.3390/cancers17101722
[73]Nikanjam M, Kato S, Kurzrock R. Liquid biopsy: Current technology and clinical applications. Journal of Hematology & Oncology, 2022, 15(1), 131. DOI: 10.1186/s13045-022-01351-y
[74]Ismail RK, Real-world data in cancer treatment: Bridging the gap between trials and clinical practice. Utrecht University, 2022. DOI: 10.33540/1338
[75]Ali H. Artificial intelligence in Multi-omics data integration: Advancing precision medicine, biomarker discovery and genomic-driven disease interventions. International Journal of Science and Research Archive, 2023, 8(1), 1012-1030. DOI: 10.30574/ijsra.2023.8.1.0189
[76]Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, et al. Personalized medicine: Recent progress in cancer therapy. Cancers, 2020, 12(4), 1009. DOI: 10.3390/cancers12041009
[77]Serratì S, De Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-generation sequencing: Advances and applications in cancer diagnosis. OncoTargets and Therapy, 2016, 7355-7365. DOI: 10.2147/OTT.S99807
[78]Cieślik M, Chinnaiyan AM. Cancer transcriptome profiling at the juncture of clinical translation. Nature Reviews Genetics, 2018, 19(2), 93-109. DOI: 10.1038/nrg.2017.96
[79]Avci CB, Bagca BG, Shademan B, Takanlou LS, Takanlou MS, Nourazarian A. Precision oncology: Using cancer genomics for targeted therapy advancements. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2025, 1880(1), 189250. DOI: 10.1016/j.bbcan.2024.189250
[80]Ivanisevic T, Sewduth RN. Multi-omics integration for the design of novel therapies and the identification of novel biomarkers. Proteomes, 2023, 11(4), 34. DOI: 10.3390/proteomes11040034
[81]Yang M, Cui M, Sun Y, Liu S, Jiang W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Communication and Signaling, 2024, 22(1), 338. DOI: 10.1186/s12964-024-01711-w
[82]Hsu JL, Hung M-C. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer and Metastasis Reviews, 2016, 35(4), 575-588. DOI: 10.1007/s10555-016-9649-6
[83]Planchard D, Besse B, Groen HJ, Hashemi SM, Mazieres J, Kim TM, et al. Phase 2 study of dabrafenib plus trametinib in patients with BRAF V600E-mutant metastatic NSCLC: Updated 5-year survival rates and genomic analysis. Journal of Thoracic Oncology, 2022, 17(1), 103-115. DOI: 10.1016/j.jtho.2021.08.011
[84]Jamalinia M, Weiskirchen R. Advances in personalized medicine: Translating genomic insights into targeted therapies for cancer treatment. Annals of Translational Medicine, 2025, 13(2), 18. DOI: 10.21037/atm-25-34
[85]Guan YF, Li GR, Wang RJ, Yi YT, Yang L, Jiang D, et al. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chinese Journal of Cancer, 2012, 31(10), 463-470. DOI: 10.5732/cjc.012.10216
[86]Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 2021, 25(3), 1315-1360. DOI: 10.1007/s11030-021-10217-3
[87]Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20(1), 126. DOI: 10.1186/s12943-021-01431-6
[88]Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: A new era for cancer treatment. Oncology Reports, 2019, 42(6), 2183-2195. DOI: 10.3892/or.2019.7335
[89]Al-Haideri M, Tondok SB, Safa SH, Maleki AH, Rostami S, Jalil AT, et al. CAR-T cell combination therapy: The next revolution in cancer treatment. Cancer Cell International, 2022, 22(1), 365. DOI: 10.1186/s12935-022-02778-6
[90]Jariwala M, Ai-driven decision support systems for immunological disorders: Bridging big data, omics, and precision medicine, in AI-assisted computational approaches for immunological disorders. IGI Global Scientific Publishing, 2025, 353-392. DOI: 10.4018/979-8-3693-9725-1.ch013
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Imran khan yousafzai Yousafzai, Aqsa Mehreen, Nadia Noreen, Amanullah, Hawaida Ahmad, Noor Fatima, Khadija Tariq (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.